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Özgür Turhan�, Gökhan Bulut

Faculty of Mechanical Engineering, Istanbul Technical University, Gümüs-suyu 34437, Istanbul, Turkey
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Abstract

In plane nonlinear bending vibrations of a rotating beam is studied. The equation of motion is obtained in the form of

an integro-partial differential equation and then discretized by means of Galerkin’s method. Perturbation analyses are

performed on single- and two-degree-of-freedom models to obtain amplitude dependent natural frequencies and frequency

responses. Results are presented for the first two modes.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Vibrations of rotating blades or beams have been a subject of constant research interest since about a century
[1]. Along with many studies treating the problem through linear models (see Refs. [2–6] for example), there are
a number of studies treating the effect of nonlinearities. Rao and Carnegie [7,8] studied the in plane free and
forced vibrations of a rotating beam under the nonlinear effect of Coriolis forces by using the Ritz method.
Ansari [9,10] treated the same problem by means of a discrete model. Gross et al. [11] and Brons and Kliem [12]
studied the buckling problem of inward-oriented rotating nonlinear beams. Peshek et al. [13] applied the
nonlinear modal reduction concept to the study of coupled extensional-transversal vibrations of a rotating
beam with nonlinear axial strain. Abolghasemi and Jalali [14] considered a similar coupled problem for a beam
with periodically varying pitch angle and have shown by means of Poincaré maps that the system may exhibit
chaotic behaviour. Hamdan and Al-Bedoor [15] studied the free vibrations of a rotating beam with nonlinear
curvature via a single-degree-of-freedom (dof) model by using a time transformation method. Finally, Larsen
and Nielsen developed a nonlinear model for the coupled in and out of plane bending vibrations of pre-twisted
wind turbine blades with periodically moving support [16], and used a two-dof reduced form of that model to
construct stability/chaos charts of the system via Lyapunov exponent calculations [17]. A similar problem was
also addressed by Bulut and Turhan [18] who have worked out chaos charts for the in plane vibrations of a
rotating beam with periodically varying speed, through a single-dof model.

The present study treats the in plane vibrations of a rotating Euler–Bernouilli beam with nonlinear
curvature. Other nonlinearities of geometric and dynamic origin are also considered up to cubic terms. The
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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paper is organized as follows: in Section 2, the nonlinear equation of motion is first obtained in the form of an
integro-partial differential equation, and then discretized via Galerkin’s method to yield a system of coupled
nonlinear ordinary differential equations. Section 3 presents some results obtained through a single-dof model
extracted from the general formulation. A qualitative analysis of the singular (equilibrium) points is presented
in Section 3.1 and free and forced vibrations are analysed via Lindstedt–Poincaré (LP) method in Sections 3.2
and 3.3, respectively. A two-dof model is then considered in Section 4 where a natural frequency analysis is
performed via multiple scales method.

The analyses reveal that a speed change may have some unusual effects on the dynamics of a rotating beam,
such as giving rise to a qualitative change from hardening to softening behaviour, and causing harmonic or
super-harmonic jump phenomena to occur when the beam is under a periodic excitation of external origin.

2. Equation of motion

Consider a uniform Euler–Bernouilli beam with mass density r, cross sectional area A, length ‘ and flexural
rigidity EI clamped onto the out or inside of a rigid ring of radius R rotating at constant rate O (Figs. 1a
and b). To derive the equation of motion governing the in plane transversal vibrations of this system note that
a nonlinear integro-partial differential equation for moderately high amplitude transverse vibrations of a
stationary Euler–Bernouilli beam with nonlinear curvature, acted upon by a distributed force with
components f xðs; tÞ and f yðs; tÞ can be written
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where up to cubic nonlinearities are considered. (See Appendix A for the derivation of this equation.) Eq. (1)
can be used to obtain the equation of motion of the beams of Fig. 1a and b by defining f xðs; tÞ and f yðs; tÞ as
the corresponding inertia forces due to the rotation of the frame. Considering the outward-oriented beam of
Fig. 1a, we set

f xðs; tÞ ¼ rA O2 Rþ
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where recourse has been made to the position and relative velocity vectors given in Eqs. (A.4) and (A.5)
of Appendix A. Note that, would the inward-oriented beam of Fig. 1b be considered, �R should replace R in
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Fig. 1. Rotating beam: (a) oriented outward (a ¼ R=‘); (b) oriented inward (a ¼ �R=‘).
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Eq. (2). Substituting Eqs. (2) into Eq. (1), adding linear Kelvin–Voigt material damping with coefficient g,
discarding higher than cubic order terms in consistency with previous omissions, and putting in non-
dimensional form, one obtains
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and primes denote differentiation with respect to u while overdots denoting differentiation with respect to t.
The boundary conditions are

vð0; tÞ ¼ v0ð0; tÞ ¼ v00ð1; tÞ ¼ v000ð1; tÞ ¼ 0. (5)

Eqs. (3) and (5) constitute a nonlinear boundary value problem for the in plane transverse vibrations of the
rotating outward-oriented beam of Fig. 1a. The formulation can as well be used for the inward-oriented beam
of Fig. 1b by setting a ¼ �R/‘. Thus, aX0 will refer to an outward-oriented beam and ao0 to an inward-
oriented one in the rest of this study. Note that all the nonlinear terms in Eq. (3) are of geometric origin, except
the first two Coriolis terms (terms with a factor 2b) that would be present even if geometric nonlinearities were
neglected. Note also that Eq. (3) depends only on the two parameters a and b (damping put aside) so that the
dynamic character of the system can conveniently be portrayed on a a�b plane, as will be done in this study.

The boundary value problem in question can be approximated by a finite set of ordinary differential
equations by means of Galerkin’s method. To do that, introduce the Galerkin expansion

vðu; tÞ ¼
Xn

i¼1

giðtÞjiðuÞ (6)

with the eigenfunctions of a linear stationary cantilever as comparison functions

jiðuÞ ¼ cosh liu� cos liu� kiðsinh liu� sin liuÞ; ki ¼
cosh li þ cos li

sinh li þ sin li

, (7)

where li’s are the roots l1 ¼ 1.8751040687, l2 ¼ 4.6940911330,y of the transcendental equation
1þ cos l cosh l ¼ 0, and follow the usual procedures of Galerkin’s method to obtain the o.d.e set

€gi þ zl4i _gi þ l4i gi � b2
Xn

j¼1

ðaAij þ Bij þ dijÞgj þ 2b
Xn

j¼1

Xn

k¼1

Gijkgj _gk

þ
Xn

j¼1

Xn

k¼1

Xn

‘¼1

½Cijk‘gjgk €g‘ þDijk‘gj _gk _g‘ þ ðEijk‘ � b2F ijk‘Þgjgkg‘� ¼ 0; i ¼ 1; 2; . . . ; n (8)

for the n unknown Galerkin coordinates gi(t) of Eq. (6). In Eq. (8), dij is the Kronecker delta and the other
coefficients are as defined in Appendix B.

Eq. (8) constitutes an approximate discretized nonlinear model for the in plane transverse vibration of the
rotating beams of Fig. 1.
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3. Single-dof model

A single-dof model for the i-th mode vibrations can be extracted from Eq. (8) as

ð1þ Ciiiig
2
i Þ €gi þ zl4i _gi þ O112i gi þDiiiigi _g

2
i þ ðEiiii � b2F iiiiÞg

3
i ¼ 0, (9)

where

O11i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4i � b2ðaAii þ Bii þ 1Þ

q
(10)

is the i-th dimensionless linear natural frequency about the trivial equilibrium. Note that here and in what
follows natural frequencies are given definite labels to avoid confusion, so that

OJKi;

J : model dof

K : model order of nonlinearity ðK ¼ 1; linear; K ¼ 3; cubic nonlinearÞ

i : mode number

8><
>: (11)

Thus, O11i reads the i-th natural frequency as obtained from a single-dof linear model. As a numerical
example for Eq. (10) let one note

O111 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12:362363þ ð1:570878aþ 0:193336Þb2

q
. (12)

It should be noticed that no Coriolis term (terms with coefficients Gijk) is present in Eq. (9). This is due to the
fact that all the coefficients Gijk vanish when i ¼ k as shown in Appendix B.

Perturbation analyses will be performed below to obtain free and forced responses of Eq. (9). But prior to
that, it will be pertinent to perform a qualitative analysis on the singular (equilibrium) points of Eq. (9), their
stability and bifurcations to get insight into the problem.

3.1. A qualitative analysis

It can easily be shown that Eq. (9) has three equilibrium points gi whose stability is controlled by the

characteristic roots r1;2 ¼ �0:5zl
4

i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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of the corresponding linearized equations, where

l
4

i ¼
l4i

1þ Ciiiig
2
i

, (13a)

o2
i ¼

O112i þ 3ðEiiii � b2F iiiiÞg
2
i

1þ Ciiiig
2
i

. (13b)

These are the trivial equilibrium point:

gi ¼ 0; o2
i ¼ O112i , (14)

and the two non-trivial ones

gi ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O112i

b2Fiiii � Eiiii

s
, (15a)

o2
i ¼ O112i ¼

2O112i ðEiiii � b2FiiiiÞ

CiiiiO112i � ðEiiii � b2FiiiiÞ
, (15b)

where the corresponding linear natural frequency obtained by inserting the related gi value into Eq. (13b) is
also given for each point, and O11j is as given in Eq. (10). The stability of the equilibrium points are dictated

by the sign of o2
i so that the point is a stable centre, node or focus depending on the value of z if o2

i 40, an

unstable saddle if o2
i o0 and a bifurcation occurs as o2

i changes the sign. Eqs. (15a) and (15b) show at a glance

that as Ciiii40, i ¼ 1,2,y (see Appendix B), the denominator of Eq. (15b) cannot change sign as long as the
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numerator and the denominator of Eq. (15a) have the same sign i.e., as long as the equilibrium point of
Eq. (15a) exists. Hence, the condition for a bifurcation to occur reduces for both Eqs. (14), (15a) and (15b) to

o2
i ¼ 0 giving two possible bifurcation conditions. These are O11j ¼ 0 that yields

b11BFCi ðaÞ ¼
l2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aAii þ Bii þ 1
p or a11BFCi ðbÞ ¼

l4i =b
2
� Bii � 1

Aii

, (16)

and Eiiii � b2F iiii ¼ 0 that yields

b11BFCi ¼

ffiffiffiffiffiffiffiffi
Eiiii

F iiii

r
, (17)

where the labelling method of Eq. (11) is applied. As Aiio0, Biio0, i ¼ 1,2,y (see Appendix B), the
bifurcation of Eq. (16) can occur in any i-th mode but only when ao�(Bii+1)/Aii, a negative value. That
bifurcation corresponds to the well-known buckling problem of inward-oriented rotating beams extensively
treated in the literature both linearly, e.g., [19–21] and nonlinearly [11,12]. On the other hand, as Eiiii40;
i ¼ 1,2,y and Fiiii40; i ¼ 2,3,y but F1111o0 (see Appendix B), the bifurcation of Eq. (17) exists in higher
modes but does not exist in the first mode. (It should be noted here that this result departs from those of
Ref. [11] where a counterpart of Eq. (17) was found to apply to the first mode.) Considering now the
equilibrium points and their stability; it can easily be seen that (i) the trivial equilibrium of Eq. (14) always

exists. It is stable if bob11BFCi ðaÞ and unstable otherwise; (ii) the non-trivial equilibria of Eqs. (15a) and (15b)

exist only in the b range between the two bifurcation values b11BFCi ðaÞ and b11BFCi (where a non-existing

bifurcation value should be understood as +N). They are stable if b4b11BFCi ðaÞ and unstable otherwise.

Hence, the existing non-trivial equilibria are all unstable if b11BFCi ob11BFCi ðaÞ; (iii) it results from (i) and (ii)

above that no stable equilibrium exists in the range b4maxðb11BFCi ðaÞ;b11BFCi Þ. As b11BFC1 ¼ 1, this implies

that a stable equilibrium is always (for any beam and at any speed) warranted at the fundamental mode, but

that an inward-oriented beam with ao�(Bii+1)/Aii for which b11BFCi ðaÞa1 will experience total collapse at

higher modes for which b11BFCi a1, i ¼ 2,3,y when its speed exceeds a given b threshold.

Sample bifurcation diagrams versus dimensionless rotation speed b are given in Fig. 2 for the first two
modes. An inspection of this figure with the calculated bifurcation values b11BFC1 ð�4Þ ¼ 1:4247,
b11BFC2 ð�4Þ ¼ 4:0839, b11BFC1 ð�1Þ ¼ 2:9957, b11BFC2 ð�1Þ ¼ 12:3779, and b11BFC2 ¼ 8:0601 kept in mind, gives
an idea on the above described behaviour of the equilibrium points. Note for example the total collapse zones
apparent in Figs. 2a2 and b2.

It should, however, be mentioned here that of the results obtained in this section, those concerning the
behaviour of the system at a distance from the trivial equilibrium are not definitive because first, the validity of
the used mathematical model is essentially restricted to the vicinity of the straight beam configuration, and
second, all the nonlinear terms are truncated at the third degree, overlooking thus further possible equilibria.
Only behaviours about a stable trivial equilibrium will be considered in the rest of this study.

3.2. Free vibrations

Let the i-th mode undamped free vibrations about the trivial equilibrium be examined through Eq. (9) by
means of a perturbation method. To this end, put z ¼ 0 and gi  gi

ffiffi
�
p

(which amounts to assuming that g2
i

shall remain at the order of e; a small parameter) into Eq. (9) to obtain

€gi þ O112i gi þ �½Ciiiig
2
i €gi þDiiiigi _g

2
i þ ðEiiii � b2FiiiiÞg

3
i � ¼ 0. (18)

At that point, a brief comment on the introduced perturbation parameter e will be in order. There are two
ways of introducing such a parameter into a nonlinear differential equation. It can either be extracted from the
equation itself in the form of a well-defined dimensionless function of the system parameters by means of a
designed non-dimensionalization of the equation (Cole and Kevorkian [22]). Or, it can be artificially
introduced into the equation (Nayfeh and Mook [23]) to serve as a ‘‘book keeping procedure’’ during the
calculations, and then discarded by setting e ¼ 1. Although the former way has obvious advantages whenever
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Fig. 2. Bifurcation of the equilibria with changing b: (a) a ¼ �4; (b) a ¼ �1; (c) a ¼ 1; upper row first mode, lower row second mode

(solid lines stable centers, nodes or foci, dashed lines unstable saddles).
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it is applicable, the second way had to be taken in the present study where the equation is already non-
dimensionalized to fit other requirements. Periodic solutions of Eq. (18) can approximately be obtained by
means of LP method (see Refs. [24] or [25] for example). Assuming initial conditions gið0Þ ¼ Gi, _gið0Þ ¼ 0 and
applying the method, (Details are omitted for sake of brevity.) one obtains, up to O(e2) terms

giðtÞ ¼ Gi cos O13itþ
G3

i

32
Ciiii þDiiii �

Eiiii � b2Fiiii

O112i

 !
ðcos O13it� cos 3O13itÞ, (19)

with the amplitude dependent i-th natural frequency O13i given, up to O(e2) terms, as

O13i ¼ 1þ
1

8
Diiii þ 3

Eiiii � b2Fiiii

O112i
� Ciiii

 !" #
G2

i

( )
O11i, (20)

where O11i is as given in Eq. (10) and the dependence on e is removed by setting e ¼ 1. The validity of the
solution is, therefore, restricted to the cases where Gi

2 is small enough. Note that Eq. (20) reduces to Eq. (10)
when Gi ¼ 0, as it should. As a numerical example let one note

O131 ¼ 1þ
3:791312þ 0:058151b2

O1121
� 0:229148

 !
G2

1

" #
O111. (21)

Before proceeding with the analysis, it will be in order to check the validity of the obtained solution. But recall
first from Section 3.1 that its validity is already restricted to the cases where the trivial equilibrium is stable i.e.,
where bob11BFCi ðaÞ. The solutions given by Eqs. (19) and (20) are compared in Table 1 to the numerical
solutions of Eq. (18). Comparisons are presented for the first mode and for different values of the parameters
a, b and amplitude G1 throughout the period T of the related motion, where T is calculated from Eq. (21). An
inspection of Table 1 shows that the performance of the LP solution is excellent for a quite high dimensionless
amplitude value of G1 ¼ 0.1 and still acceptable for an exaggerated value of G1 ¼ 0.5, irrespective of the values
of the parameters a and b. It is then concluded that Eqs. (19) and (20) can reliably be used to study the
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Table 1

Comparison of the Lindstedt–Poincaré (LP) solutions to numerical solutions.

a ¼ 0.5, b ¼ 1 a ¼ 5, b ¼ 10

t G1 ¼ 0.1 (T ¼ 1.719165) G1 ¼ 0.5 (T ¼ 1.695022) t G1 ¼ 0.1 (T ¼ 0.220214) G1 ¼ 0.5 (T ¼ 0.232364)

g1 (LP) g1 (num) g1 (LP) g1 (num) g1 (LP) g1 (num) g1 (LP) g1 (num)

0 0.100000 0.100000 0.500000 0.500000 0 0.100000 0.100000 0.500000 0.500000

0.4 0.010947 0.010947 0.052113 0.054348 0.05 0.014487 0.014487 0.130202 0.128919

0.8 �0.097672 �0.097671 �0.495085 �0.493618 0.10 �0.095936 �0.095934 �0.469940 �0.465020

1.2 �0.032301 �0.032303 �0.153255 �0.158568 0.15 �0.042210 �0.042209 �0.345264 �0.336118

1.6 0.090785 0.090782 0.479724 0.474331 0.20 0.084033 0.084029 0.360031 0.354587

T 0.100000 0.100000 0.499955 0.500000 T 0.100000 0.100000 0.499989 0.500000

Fig. 3. Effect of the amplitude on the rotation speed dependence of the fundamental frequency: (a) an inward-oriented beam (a ¼ �1); (b)
an outward-oriented beam (a ¼ 1).
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behaviour of the moderately high amplitude solutions of Eq. (18), though one should yet be cautious about
making deductions on those of the original Eq. (3). We will return to that question in Section 4.

Fig. 3 shows the rotation speed dependence of the fundamental frequency as obtained from Eq. (21).
An inward-oriented beam with a ¼ �1 is considered in Fig. 3a, and an outward-oriented one with a ¼ 1 in
Fig. 3b. Curves are given for two different values of the amplitude G1 along with the linear frequency curves
labelled G1 ¼ 0. The latter ones exhibit some well-known effects of the rotation speed on the natural
frequencies. In inward-oriented beams, it may decrease the frequency until it vanishes, i.e., loss of trivial
equilibrium stability (buckling) occurs at the related mode, and in outward-oriented ones it regularly increases
it. Considering now the nonlinear curves, an inspection of Fig. 3a shows that the larger is the amplitude G1 the
higher is the frequency. Hence, the considered inward-oriented beam exhibits hardening behaviour. One also
notes that the performance of Eq. (21) deteriorates in the vicinity of b11BFC1 ð�1Þ ¼ 2:9957 before going totally
invalid at that point. As for Fig. 3b; this figure shows that the considered outward-oriented beam displays
hardening behaviour below a certain critical value bCR of b but softening behaviour above it. The critical
conditions can be obtained from Eq. (20) by setting the coefficient of Gi

2 to zero. This yields

b13CRi ðaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eiiii � Ciiii �

1
3

Diiii

	 

l4i

3F iiii � Ciiii �
1
3

Diiii

	 

ðaAii þ Bii þ 1Þ

s
or a13CRi ðbÞ ¼ a11BFCi ðbÞ �

1

Aii

1
b2

Eiiii � F iiii

Ciiii �
1
3

Diiii

, (22)
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Fig. 4. Softening, hardening and buckling regions: (a) first mode; (b) second mode.
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where again the labelling method of Eq. (11) is applied. The beam exhibits hardening behaviour in the i-th
mode if aoa13CRi ðbÞ and softening behaviour if a4a13CRi ðbÞ. The corresponding regions of a a�b parameter
plane are shown in Figs. 4a and b for the first two modes together with the buckling regions defined in
Eq. (16), where the present solution loses its validity. An inspection of Fig. 4a shows that in the first mode, an
inward-oriented (ao0) beam always behaves as a hardening spring unless it is buckled. But that an outward-
oriented (a40) beam may show hardening or softening behaviour depending on the values of a and b, so that
for a given value of the dimensionless hub radius a it may behave as a hardening spring at low speeds but
switch to a softening one at high speeds. On the other hand, Fig. 4b shows that in the second mode, an inward-
oriented (ao0) beam generally behaves as a softening spring, except in a narrow parameter band surrounding
the buckling region, and that an outward-oriented (a40) one always behaves as a softening spring.

The most noteworthy result of the present analysis is that a speed change may cause a passage from
hardening to softening behaviour, i.e., a qualitative change in the dynamic character of a given rotating beam.
It should be noted that the results obtained in this section differ from those of Ref. [15] where it was stated that
an outward-oriented rotating beam would always exhibit hardening behaviour in the first mode and softening
behaviour in higher modes, and that the first mode would suffer loss of stability at low (even zero) amplitudes
when the rotation speed is high.

3.3. Response to harmonic excitation

Let now the response to harmonic excitation of the single mode model be examined. Returning to Eq. (18),
putting gi  gi

ffiffi
�
p

, introducing a modal damping with coefficient mi ¼ �zl
4
i =2 and a harmonic modal forcing

in the form
ffiffi
�
p

Fi cos Ot, where the damping is scaled so as to take effect at the same order as the
nonlinearities but the forcing at that of the linear terms, one has

€gi þ O112i gi þ �½Ciiiig
2
i €gi þ 2mi _gi þDiiiigi _g

2
i þ ðEiiii � b2F iiiiÞg

3
i � ¼ Fi cos Ot. (23)

The main, super-harmonic and sub-harmonic resonances of this model are studied below, via again the
LP method.

Main resonance: To study the system behaviour at the main resonance, assume

O ¼ O11ið1þ s�Þ; F i ¼ �f i, (24)

where s is a detuning parameter and the forcing is now rescaled to take effect at the same order as the damping
and the nonlinearities. This scaling, that essentially amounts to assuming that no strong forcing is necessary to
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get characteristic resonant behaviour of the system, is known to be appropriate in the main resonance
behaviour analysis of the forced Duffing oscillator, a paradigm for systems with cubic nonlinearities, will
prove to be equally valid here. (This rescaling will not be applied in the analysis of the sub and super-harmonic
resonances where a strong forcing proves to be necessary to obtain characteristic resonance behaviour of the
system, as is the case in the analysis of Duffing’s equation.) Applying now the method (details omitted) one
obtains the steady-state response, up to O(e) terms, as

giðtÞ ¼ Gi cosðOt� yiÞ, (25)

where the amplitude Gi, the phase angle yi and the detuning parameter s are interrelated through

s ¼
O13i

O11i

� 1�
1

O112i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2

i

4G2
i

� m2i O11
2
i

s
, (26)

yi ¼ tan�1
mi

O13i � ð1þ sÞO11i

, (27)

where O11i and O13i must be substituted from Eqs. (10) and (20), respectively, and dependence on e is again
removed by setting e ¼ 1.

Fig. 5 shows the variation of the amplitude G1 and phase angle y1 of the first mode with the detuning
parameter s, as obtained from Eqs. (26) and (27). Curves are presented for a ¼ 1, F1 ¼ 0.0025, m1 ¼ 0.001,
and three different values of b corresponding to different regions of Fig. 4a. Namely, b ¼ 1 corresponding to
the hardening region, b ¼ 2 to the softening one, and bCR ¼ 1.664123 to the boundary separating the two
regions. The critical value of b is calculated from Eq. (22) with a ¼ 1. An inspection of Fig. 5 (and others not
reproduced here) shows that (i) the inclinations of the resonance curves (rightward for a hardening system and
leftward for a softening one) are in accordance with Fig. 4a; (ii) jump phenomena may accompany a frequency
change in the forcing, provided that the force amplitude is sufficiently high, the damping is sufficiently low and
the rotation speed is sufficiently far from its critical value; (iii) in an outward-oriented beam, the lower is the
rotation speed of the beam the higher is its resonance peak. Thus, a low speed main resonance is more
dangerous than a high speed one. This can also readily be deduced from Eq. (26) whose validity requires the
term under the radical to be non-negative, i.e.,

Gip
Fi

2miO11i

. (28)

Thus, the peak (that corresponds to the equal sign in Eq. (28)) of a resonance curve of an i-th mode is inversely
proportional to the natural frequency O11i, which is known to regularly increase with the rotation speed in
outward-oriented beams. (No such generalization is possible for inward-oriented ones whose natural
frequencies may increase or decrease with the rotation speed.)
Fig. 5. Main resonance of the first mode, forcing frequency changes: (a) amplitudes; (b) phases (a ¼ 1, F1 ¼ 0.0025, m1 ¼ 0.001).
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The resonance curves of Fig. 5 are obtained in the ordinary way of varying the forcing frequency through a
natural frequency while keeping all the other parameters fixed. But, as its natural frequencies depend on the
rotation speed, a rotating beam can also be driven through resonance by simply changing its rotation speed
while keeping the forcing frequency constant (This may be the case when the excitation is due to an external
cause.). Then, if the resonance is to occur at a speed bres, the detuning parameter will read

sðbÞ ¼
1

�

O11iða;bresÞ
O11iða;bÞ

� 1

� �
, (29)

where now e ¼ 1. Fig. 6 shows some resonance curves corresponding to different bres values for the first mode
of an outward-oriented beam with parameter values a ¼ 1 (bCR ¼ 1.664123), F1 ¼ 0.015, m1 ¼ 0.004, as
obtained by inserting Eq. (29) into Eq. (26). Interpreting Fig. 6 one should note that, in contrast with Fig. 5,
the detuning parameter decreases here from left to right so as s ¼ 0 at b ¼ bres. The inclinations of hardening
and softening resonance curves are therefore reversed. Upon inspection of Fig. 6 one notes that: (i) the shape
of the resonance curve closely depends on the bres value at which resonance occurs; (ii) in accordance with
Fig. 5, the curve is of hardening nature when bresobCR, of softening nature when bres4bCR, and of linear
nature when bres ¼ bCR. Jump phenomena may, therefore, accompany a speed change if the resonant speed is
sufficiently far from the critical speed; (iii) a low speed resonance (such as those occurring at bres ¼ 0.25 and
bres ¼ 0.5 for example) is especially dangerous as it can give rise to very high amplitudes over the whole speed
range below the resonant speed. (This is due to the almost stationary behaviour of the natural frequencies
against rotation speed at low speeds. See Fig. 3.)

As Eq. (23) describes a system with cubic nonlinearities (3x) super-harmonic and (1/3) sub-harmonic
resonances are also expected to occur. These are studied below.
Fig. 6. Main resonance of the first mode, forcing frequency kept constant, rotation speed changes, each graph corresponds to a different

resonant speed bres (a ¼ 1, F1 ¼ 0.015, m1 ¼ 0.004).
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Super-harmonic resonance: To study the (3x) super-harmonic resonances, assume

O ¼
O11i

3
ð1þ s�Þ, (30)

return to Eq. (23), and apply the LP method to obtain the steady-state solution

giðtÞ ¼
9Fi

8O112i
cos Otþ Gi cosð3Ot� yiÞ þOð�Þ, (31)

where the relations

s ¼
O13i

O11i

� 1þ
3F i

16O112i

 !2

Diiii þ
27ðEiiii � b2FiiiiÞ

O112i
� 11Ciiii

 !

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

Gi

3Fi

16O112i

 !3

Ciiii þDiiii �
9ðEiiii � b2FiiiiÞ

O112i

 !2
4

3
5
2

�
m2i

O112i

vuuut (32)

and

yi ¼ tan�1
mi

O13i þ
3Fi

16O112i

 !2

Diiii þ 27
Eiiii � b2Fiiii

O112i
� 11Ciiii

 !
� ð1þ sÞ

2
4

3
5O11i

(33)

hold true. Examples of super-harmonic resonance curves of the first mode, corresponding to parameter values
a ¼ 1, F1 ¼ 2.5, m1 ¼ 0.001, and three different values of b corresponding to different regions of Fig. 4 are
shown in Fig. 7. An inspection of this figure shows that the zones of Fig. 4 are still valid for super-harmonic
resonances and that jump phenomena may again accompany a change in the forcing frequency. As was done
in Eq. (28), the peak amplitude values can be deduced from the non-negativity condition of the term under the
radical in Eq. (32);

Gip
3

miO11
5
i

3Fi

16

� �3

Ciiii þDiiii �
9ðEiiii � b2F iiiiÞ

O112i

 !�����
�����. (34)

Fig. 8 shows the rotation speed dependence of the peak amplitudes G1max and G2max of the first two modes
of an outward-oriented beam as calculated from Eq. (34) with equal sign, for parameter values a ¼ 1,
F1 ¼ 2.5, m1 ¼ 0.001. Note from Fig. 8a that, in contrast with the main resonance, that dependence is not
uniform in all modes now. As an interesting detail let one note the vanishing of G1max (i.e., the impossibility of
super-harmonic resonance in the first mode) at a certain value of b, which can be shown to be given by

bðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7:668046=11:89097a� 0:092511

p
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Fig. 7. Super-harmonic resonance of the first mode: (a) amplitudes; (b) phases (a ¼ 1, F1 ¼ 2.5, m1 ¼ 0.001).
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Fig. 8. Rotation speed dependence of the peak amplitudes in super-harmonic resonance: (a) first; (b) second mode (a ¼ 1, F1 ¼ 2.5,

m1 ¼ 0.001).
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Fig. 9. Sub-harmonic resonance of the first mode: (a) amplitudes; (b) phases (a ¼ 1-bCR ¼ 1.664123, F1 ¼ 2.5, m1 ¼ 0.0015).
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Sub-harmonic resonance: To study the (1/3) sub-harmonic resonances, substitute

O ¼ 3O11ið1þ s�Þ (35)

into Eq. (23), apply the LP method and obtain

giðtÞ ¼ �
Fi

8O112i
cos Otþ Gi cos

1

3
Otþ yi

� �
þOð�Þ (36)

with

s ¼ 1�
O13i

O11i

þ
F i

16O112i

 !2

9Diiii þ
3ðEiiii � b2F iiiiÞ

O112i
� 19Ciiii

 !

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FiGi

64O112i

 !2

11Ciiii � 5Diiii �
3ðEiiii � b2FiiiiÞ

O112i

 !2

�
m2i

O112i

vuut (37)

and

yi ¼
1

3
tan�1

�mi

O13i � 9Diiii þ
3ðEiiii � b2FiiiiÞ

O112i
� 19Ciiii

 !
Fi

16O112i

 !2

þ ð1� sÞ

2
4

3
5O11i

. (38)
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Examples of resonance curves are given for the first mode in Fig. 9. As can be seen in this figure (i) the
hardening and softening regions of Fig. 4 are valid for sub-harmonic resonances too; (ii) in contrast with
the main and super-harmonic resonances, no jump phenomenon is encountered in sub-harmonic ones;
(iii) resonance curves have unique shapes with minima instead of maxima. These minima can be calculated
from Eq. (37), which yields

GiX
64miO11

3
i

jð11Ciiii � 5DiiiiÞO112i � 3ðEiiii � b2FiiiiÞjF i

. (39)

Although not elaborated here, it should be clear that both sub-harmonic and super-harmonic resonances and
super-harmonic jump phenomena can be encountered during a speed change, in the same way as in the main
resonance.

Let one also note that under some circumstances harmonic excitation may cause a rotating beam to undergo
chaotic vibrations as was shown in Ref. [17] through a two-dof model and in Refs. [14,18] through single-dof
ones. That problem is left beyond the scope of this study.
4. Two-dof model

In order to check and refine the results obtained above through a single-dof model, the undamped free
vibrations of a two-dof model taken from Eq. (8) will be considered in this section. Thus consider

Fiðgi; gjÞ ¼ ½1þ Ciiiig
2
i þ ðCiiji þ CijiiÞgigj þ Cijjig

2
j � €gi þ ½Ciiijg

2
i þ ðCiijj þ CijijÞgigj þ Cijjjg

2
j � €gj

þ O112i gi � O2
ijgj þ 2bðGiijgi þ GijjgjÞ _gj þ ðDiiiigi þDijiigjÞ _g

2
i þ 2ðDiiijgi þDijijgjÞ _gi _gj

þ ðDiijjgi þDijjjgjÞ _g
2
j þ ðEiiii � b2FiiiiÞg

3
i þ ðEiiij � b2F iiijÞg

2
i gj þ ðEiijj � b2FiijjÞgig

2
j

þ ðEijjj � b2F ijjjÞg
3
j ¼ 0; i; j ¼ k; ‘; jai, (40)

where O11i is as given in Eq. (10), use is made of the previously discussed property Giji ¼ 0 (See Appendix B),
of the equalities Diiij ¼ Diiji, Dijij ¼ Dijji that directly follow from the definition Eq. (B.5) of Dijk‘, and of the
definitions

Eiiij ¼ Eiiij þ Eiiji þ Eijii; F iiij ¼ F iiij þ Fiiji þ Fijii, (41)

Eiijj ¼ Eiijj þ Eijij þ Eijji; F iijj ¼ F iijj þ Fijij þ F ijji,

Oij ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaAij þ BijÞ

p
, (42)

where Oji ¼ Oij due to the symmetry of the coefficients Aij and Bij (see Appendix B). Eq. (40) describes an
approximate two-dof nonlinear model for the coupled k-th and ‘-th mode vibrations of the rotating beam of
Fig. 1. That equation contains, along with a number of nonlinear coupling terms, a linear coupling whose
coefficient is given in Eq. (42). That coupling is due to the rotation of the beam and vanishes when b ¼ 0, as
could be expected in view of the fact that the stationary beam problem is already linearly decoupled during
discretization by means of the eigenfunctions of a linear stationary beam. It will prove to be convenient to
remove that residual linear coupling before proceeding. Hence, consider the linear part of Eq. (40)

€gi þ O112i gi � O2
ijgj ¼ 0; i; j ¼ k; ‘; jai, (43)

perform its eigen-analysis to obtain the i-th natural frequency

O21i ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðO112i þ O112j Þ þ sgnði � jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðO112i � O112j Þ

2
þ 4O4

ij

qr
(44)
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and the corresponding normalized mode vector

uðiÞ ¼ fu
ðiÞ
i u

ðiÞ
j g

T ¼ gi 1
O112i � O112j � sgnði � jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðO112i � O112j Þ

2
þ 4O4

ij

q
2O2

ij

8<
:

9=
;

T

(45)

with

gi ¼
2O2

ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4O4

ij þ ½O11
2
i � O112j � sgnði � jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðO112i � O112j Þ

2
þ 4O4

ij

q
�2

r , (46)

where O11i and O21j must be substituted from Eq. (10) and the sign function is introduced to keep the
expressions valid for both the lowest (ioj) and the highest (i4j) of the coupling modes. Then, project Eqs. (40)
onto the linear modal space. To this end substitute the modal decomposition

gi ¼ Ziu
ðiÞ
i þ Zju

ðjÞ
i (47)

into Eq. (40) that, as a result, reads FiðZi; ZjÞ ¼ 0, and write

u
ðiÞ
i FiðZi; ZjÞ þ u

ðiÞ
j FjðZi; ZjÞ ¼ 0; i; j ¼ k; ‘; iaj (48)

to obtain

€Zi þ O212i Zi ¼ � �fðciiiiZ2i þ ciijiZiZj þ cijjiZ2j Þ€Zi þ ðciiijZ2i þ ciijjZiZj þ cijjjZ2j Þ€Zj þ ðdiiiiZi þ dijiiZjÞ_Z
2
i

þ 2ðdiiijZi þ dijijZjÞ_Zi _Zj þ ðdiijjZi þ dijjjZjÞ_Z
2
j þ 2b½ðgiiiZi þ gijiZjÞ_Zi þ ðgiijZi þ gijjZjÞ_Zj�

þ ðeiiii � b2f iiiiÞZ
3
i þ ðeiiij � b2f iiijÞZ

2
i Zj

þ ðeiijj � b2f iijjÞZiZ
2
j þ ðeijjj � b2f ijjjÞZ

3
j g; i; j ¼ k; ‘; iaj, (49)

where e ¼ 1 is a provisionally introduced parameter to label the nonlinear terms. Now, assume initial
conditions Zið0Þ ¼ Ai, _Zið0Þ ¼ 0, i ¼ k,‘, discard any probability of internal resonance that can be shown to
occur when O21j ffi p � O21i with p ¼ 1

2
, 1
3
, 1, 2, or 3 and apply the multiple scales method (details omitted here,

see Ref. [23] for the method) to obtain the solutions ZiðtÞ ¼ Ai cos O23itþOð�Þ; i ¼ k; ‘ where the natural
frequency O23i is given up to O(e2) terms as

O23i ¼ 1þ
1

8
diiii þ 3

eiiii � b2f iiii

O212i
� ciiii

 !" #
A2

i þ
1

4

eiijj � b2f iijj þ ðdiijj � ciijjÞO212j
O212i

� cijji

" #
A2

j

( )
O21i,

i; j ¼ k; ‘; iaj, (50)

where O21i and O21j must be substituted from Eq. (44) and the other coefficients are as defined in Appendix C.
Eq. (50) reduces, as it should, to the two-dof linear frequency of Eq. (44) when both Ai and Aj vanish, and to
the single-dof nonlinear frequency of Eq. (20) when coupling is ignored. This equation that accounts for
the contribution of the j-th mode on the i-th natural frequency obviously constitutes a refined counterpart of
Eq. (20). Note however that the effect of the Coriolis terms with coefficients gijk does not appear at that level of
approximation. The first two frequencies calculated from Eq. (50) with k ¼ 1, ‘ ¼ 2 (i.e., coupling of the first
two modes are considered), are compared on Table 2 to those calculated from Eq. (20) for different a, b and
modal amplitude values. The values appearing on the first column of the table refer to the amplitude of the
mode whose frequency is calculated, i.e., to Ai for a column of OJ3i’s. The other modal amplitude is set to zero
in each case. Reliable results obtained by Naguleswaran [5,6] via a Frobenius series analysis of the linear part
of Eq. (3) (Hence corresponding to A1 ¼ A2 ¼ 0.) are also shown on the table. Results for aX0 are taken from
Table 3, cl–fr boundary conditions of Ref. [5], while those for ao0 from Table 3, cl–fr boundary conditions of
Ref. [6], where they were given for out-of-plane vibrations. The in-plane frequencies needed here are obtained
by using the relation [5] O2

in ¼ O2
out � b2.

A triple comparison of the linear results suggests that (i) Eq. (50) constitutes in fact a refinement over
Eq. (20) with respect to the fundamental frequency calculations but that its contribution is dubious with
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Fig. 10. Softening, hardening and buckling regions: (a) first mode; (b) second mode (SAi: softening, HAi: hardening w.r.t. i-th modal

amplitude; -.-: result from single-dof model).

Table 2

Comparison of the nonlinear frequencies from single-dof and two-dof models.

A1 or A2 Source b ¼ 1, a ¼ �1 b ¼ 1, a ¼ 0 b ¼ 1, a ¼ 1 b ¼ 5, a ¼ 1

OJ31 OJ32 OJ31 OJ32 OJ31 OJ32 OJ31 OJ32

0 Eq. (20) (J ¼ 1) 3.314336 21.962466 3.543402 22.158453 3.758534 22.352722 7.514501 28.959506

Eq. (50) (J ¼ 2) 3.314314 21.962469 3.543264 22.158475 3.758198 22.352779 7.449006 28.976422

Refs. [5,6] 3.3143 21.9624 3.5432 22.1584 3.7580 22.3526 7.4115 28.9238

0.05 Eq. (20) (J ¼ 1) 3.315341 20.543648 3.544088 20.724469 3.758941 20.903726 7.511941 26.969565

Eq. (50) (J ¼ 2) 3.315304 20.543406 3.543915 20.723858 3.758554 20.902767 7.446231 26.967548

0.1 Eq. (20) (J ¼ 1) 3.318356 16.287193 3.546146 16.422515 3.760163 16.556737 7.504262 20.999742

Eq. (50) (J ¼ 2) 3.318273 16.286218 3.545868 16.420007 3.759622 16.552730 7.437906 20.940925

0.25 Eq. (20) (J ¼ 1) 3.339460 Unstable 3.560553 Unstable 3.768717 Unstable 7.450505 Unstable

Eq. (50) (J ¼ 2) 3.339063 Unstable 3.559539 Unstable 3.767101 Unstable 7.379633 Unstable

0.5 Eq. (20) (J ¼ 1) 3.414832 Unstable 3.612005 Unstable 3.799267 Unstable 7.258517 Unstable

Eq. (50) (J ¼ 2) 3.413310 Unstable 3.608364 Unstable 3.793811 Unstable 7.171514 Unstable

Amplitude of the other mode set to zero in 2 dof calculations.
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respect to the second frequency, for a reliable analysis of which, consideration of at least the two intercepting
modes seems to be necessary; (ii) the convergence of the two-dof model is satisfactory for medium values (such
as b ¼ 1) of the parameter b, but wanting at high values (such as b ¼ 5) of it. The nonlinear results on that
table also confirm that conclusion. Let one note that a similar trend was also observed for the parameter a.
Combining now these results with those deduced from Table 1, Section 3.1 one may conclude that Eq. (50) can
reliably be used to predict, at least, the fundamental mode behaviour of the solutions of Eq. (3), provided that
the amplitudes and the parameters a and b are not too large.
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Eq. (50) shows that a�b parameter combinations may arise for which the coefficients of Ai
2 or Aj

2 vanish.
Those combinations that obviously correspond to the boundaries of hardening and softening regions of
the i-th mode with respect to the i-th and j-th modal amplitudes are calculated for i ¼ 1, j ¼ 2 and presented in
Fig. 10, where the buckling regions mentioned in Section 3.1 are also shown. (It turns out that the buckling
boundaries, i.e., bifurcation points b21BFCi ðaÞ correspond now to the vanishing conditions of the frequencies of
Eq. (44).) This figure, which is a refinement to Fig. 4 (see the hardening–softening boundary of Fig. 4a
reproduced in Fig. 10a), shows that the parameter plane is divided for each mode into different regions where
hardening or softening with respect to either of the modal amplitudes, prevails. (At the point P; a ¼ 0.009,
b ¼ 12.670 of Fig. 10a the fundamental frequency gets independent of both amplitudes.) If one considers the
total portrait of the beam by superimposing the Figs. 10a and b, one concludes that a given beam may be
guided through a multitude of variety of dynamic characters by simply changing its rotation speed.

In the softening parameter zones where a frequency decreases with increasing amplitude, a critical
combination of modal amplitudes may occur where the frequency vanishes; i.e., the related mode vibrations
lose their stability. Fig. 11 shows the loci of such critical combinations for the first (Fig. 11a) and second
(Fig. 11b) modes for different values of the parameters a and b corresponding to different regions of Fig. 10.
Only a quarter of the diagrams are shown due to double symmetry. As can easily be deduced from the
structure of Eq. (50), these loci always form conic sections; specifically ellipses when the considered mode is
softening with respect to both modal amplitudes and hyperbolas when it is hardening with respect to
an amplitude and softening with respect to the other. The cells labelled ‘‘unstable’’ in Table 2 fall to the
unstable side of the critical loci relative to the given a�b pair. (Compare the column a ¼ 1, b ¼ 1 of the table
to Fig. 11.)
Fig. 11. Critical amplitude combinations for (a) first and (b) second mode.
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Fig. 12. Numerical solutions of Eq. (40) for a ¼ 1, b ¼ 1: (a) g1ð0Þ ¼ 0:25, g2ð0Þ ¼ 0, _g1ð0Þ ¼ _g2ð0Þ ¼ 0; (b) g1ð0Þ ¼ 0, g2ð0Þ ¼ 0:25,
_g1ð0Þ ¼ _g2ð0Þ ¼ 0.
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Finally, two numerical solution examples of Eq. (40), both corresponding to the same parameter values
a ¼ 1, b ¼ 1, but to different initial conditions, are presented in Figs. 12a and b. The initial conditions of
Fig. 12a [g1ð0Þ ¼ 0:25, g2ð0Þ ¼ 0! A1 ¼ 0:249999, A2 ¼ 0.000571] correspond to a stable modal amplitude
combination for both modes according to Fig. 11, while those of Fig. 12b (g1ð0Þ ¼ 0, g2ð0Þ ¼ 0:25!
A1 ¼ 0:000571, A2 ¼ �0.249999) corresponding to an unstable combination for the second mode. These
figures verify the above analysis results and give an idea on stable and unstable motions. (Although the
behaviour of the solutions of Eq. (40) has some interesting features that deserve a separate theoretical analysis,
this problem is not considered here.)
5. Conclusions

The in plane nonlinear vibrations of a rotating beam are studied via single- and two-degree-of-freedom
models obtained through Galerkin discretization. The beam is assumed to have nonlinear curvature and all
nonlinearities of both geometric and dynamic origin are maintained in the model up to cubic terms.
Bifurcation of the equilibria, amplitude dependent natural frequency calculation and frequency response
problems are considered. All the formulations and results are given in a general form but the interest is focused
on the behaviour of the first two modes in the numerical examples.

The main results of the study can be summarized as follows: (i) a given rotating beam may switch between
hardening and softening behaviours when its rotation speed changes. The switching conditions may be
depicted on a a�b parameter plane to obtain a hardening–softening map of the system (see Fig. 10); (ii) if a
beam is under softening conditions, modal amplitude combinations may occur at which a natural frequency
vanishes, i.e., vibrations about the trivial equilibrium lose their stability; (iii) a beam exposed to a periodic
excitation with varying frequency may experience jump phenomena at the main and (3x) super-harmonic
resonances. The same phenomena may also occur under fixed frequency excitation as a result of a change in
the rotation speed.
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Appendix A

The nonlinear equation of motion of the moderately large amplitude transverse vibrations of a stationary,
inextensible Euler–Bernouilli beam of flexural rigidity EI, cross-sectional area A, mass density r and length ‘,
acted upon by a distributed force with components fx(s,t) and fy(s,t) (inertia forces included), and a tip force
with components Fx(t) and Fy(t) (Fig. A1) will be derived. To this end, recall first that the bending moment at
a station s of a beam at a time t of its motion can be written

Mðs; tÞ ¼ kðs; tÞEI , (A.1)

where the curvature k(s,t) is given by kðs; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq2x=qs2Þ2 þ ðq2y=qs2Þ2

q
. Noting from the related detail given

in Fig. A1 that for an inextensible beam ðqx=qsÞ2 þ ðqy=qsÞ2 ¼ 1, one has

qx

qs
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

qy

qs

� �2
s

ffi 1�
1

2

qy

qs

� �2

, (A.2)

so that

kðs; tÞ ¼

q2y
qs2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
qy

qs

� �2
s ffi

q2y

qs2
1þ

1

2

qy

qs

� �2
 !

, (A.3)

where binome series are invoked and terms higher than the third order are neglected.
On the other hand, making use of Eq. (A.2), the position, velocity and acceleration vectors of a point s of

the beam can be expressed:

rðs; tÞ ¼

Z s

0

xðs; tÞ
qs

ds � iþ yðs; tÞ � jffi

Z s

0

1�
1

2
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qs

� �2
" #

ds � iþ yðs; tÞ � j, (A.4)
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q2rðs; tÞ
qt2

ffi �

Z s

0

q2yðs; tÞ
qs qt

� �2

þ
qyðs; tÞ
qs

q3yðs; tÞ
qs qt2

" #
ds � iþ

q2yðs; tÞ
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Fig. A1. Stationary, inextensible Euler–Bernouilli beam.
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where s is a dummy variable standing for s. Using Eq. (A.6), the inertial force components can be put apart in
the distributed force expressions,

f xðs; tÞ ¼ f xðs; tÞ þ rA

Z s

0

q2yðs; tÞ
qs qt

� �2

þ
qyðs; tÞ
qs

q3yðs; tÞ
qs qt2

 !
ds,

f yðs; tÞ ¼ f yðs; tÞ � rA
q2yðs; tÞ
qt2

, (A.7)

where now f xðs; tÞ and f yðs; tÞ are either given forces or further inertia forces resulting from a possible overall
motion of the beam. The bending moment M(s,t) acting at a point s of the beam can be expressed, in view of
Fig. A1, as

Mðs; tÞ ¼ � F xðtÞ

Z ‘
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where Eqs. (A.7) are used for the distributed forces, x, Z and s are dummy variables standing for s, and the
integrals with respect to Z represent the moment arms of the related forces, calculated by using Eq. (A.2).
Now, insert Eqs. (A.3) and (A.8) into Eq. (A.1), take the second partial derivative with respect to s by using
the Leibniz rule and obtain
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(A.9)

as the nonlinear integro-partial differential equation of the transverse vibrations of a stationary, inextensible
Euler–Bernouilli beam subjected to a distributed force and a tip force. (The y component of the tip force, if
any, need also be considered in the boundary conditions.) Let one note that the involved inextensibility
assumption (neither longitudinal vibrations nor elongations due to acting forces are allowed) restricts the use
of Eq. (A.9) to beams whose extensional rigidity is considerably higher than its flexural one.

Setting the tip force components to zero in Eq. (A.9) one obtains Eq. (1) above.

Appendix B

The definitions of the coefficients used in Eq. (8) are given below.

Aij ¼

Z 1

0

½ð1� uÞj00j � j0j�ji du, (B.1)

Bij ¼

Z 1

0

1

2
ð1� u2Þj00j � uj0j

� �
ji du, (B.2)

Gijk ¼

Z 1

0

j0jjk �

Z u

0

j0jj
0
k ds� j00j

Z 1

u

jk ds
� �

ji du, (B.3)
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Fijk‘ ¼

Z 1

0

1

2
j0j

Z u

0

j0kj
0
‘ dsþ j0jj

00
k

Z 1

u

j‘ ds�
1

2
j00j

Z 1

u

Z s

0

j0kj
0
‘ dZds�

1

2
jjj

0
kj
0
‘

� �
ji du, (B.7)

where ji’s must be substituted from Eq. (7). Certain properties of these coefficients can be deduced from their
definitions above by using the relation

jiv
i ¼ l4i ji (B.8)

and the boundary conditions

jið0Þ ¼ j0ið0Þ ¼ j00i ð1Þ ¼ j000i ð1Þ ¼ 0. (B.9)

Aij ¼ Aji, Bij ¼ Bjiand Aiio0, Biio0. Consider Eqs. (B.1) and (B.2), integrate by parts and use Eq. (B.9) to
obtain

Aij ¼

Z 1

0
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0
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j du, (B.10)
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0
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from which the symmetry property of Aij and Bij immediately follow. Furthermore, the negativity of Aii and Bii

follows from the non-negativity of the integrand throughout the integration domain in these equations
with j ¼ i.

Giji ¼ 0. Considering Eq. (B.3) with k ¼ i, making use of Eq. (B.8) and applying integration by parts with
Eq. (B.9) in mind one has,
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To give an impression on some properties of certain other coefficients referred to in the text, namely; Ciiii40,
Eiiii40, F1111o0, Fjjjj40, j ¼ 2,3,y, calculated values of a few of these coefficients are given in Table B1.
Table B1

Some calculated coefficients.

i Ciiii Eiiii Fiiii

1 2.143318 10.110166 �0.155068

2 123.998100 3354.524848 51.635317

3 947.739848 66091.373436 447.826090

4 3876.059607 482026.290832 1888.565076

5 11044.253736 2136956.039573 5441.878331
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Appendix C

Applying the projection described in Eq. (48) one can calculate the coefficients of Eq. (49). The definitions
of those needed in Eq. (50) are given below:

ciiii ¼ Ciiiiu
ðiÞ4
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ðiÞ3

i u
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i u
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j
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where the definitions of Eqs. (41), (42), (44)–(46), and (B.4)–(B.7) must be substituted.
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